Q. 2 a. If Z is a homogeneous function of degree n in x and y , show that

$$
x^{2} \frac{\partial^{2} z}{\partial x^{2}}+2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y^{2}}=n(n-1) z
$$

Answer: Page Number 221 of Text Book 1

b. Use method of differentiation under integral sign to show that

$$
\int_{0}^{\infty} \frac{\tan ^{-1} \mathrm{ax}}{\mathrm{x}\left(1+\mathrm{x}^{2}\right)} \mathrm{dx}=\frac{\pi}{2} \log (1+\mathrm{a}), \mathrm{a} \geq 0
$$

Answer:

$$
4 \mathrm{a} \quad 2 \sqrt{\mathrm{ay}}
$$

Q. 3 a. Change the order of integration and then evaluate $\int_{0}^{4 a} \int_{y^{2} / 4 a}^{2 \sqrt{a y}} d x d y$

Answer: Page Number 298-299 of Text Book 1

b. Find the volume bounded by the $x y-p l a n e$, the cylinder $x^{2}+y^{2}=1$ and the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=3$.

Answer:

$$
\text { (b) } \begin{aligned}
\text { Reqd. valume }=\int_{-1}^{+1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}(3-x-y) d x d y \\
=\int_{-1}^{\sqrt{1-x^{2}}} d x \\
=\int_{-1}^{1}\left[6 \sqrt{1-x^{2}}-2 x \sqrt{1-x^{2}}\right] d x \\
\left.=\int_{-\frac{\pi}{2}}^{\pi / 2}[6 \cos \theta-2 \sin \theta \cos \theta] \cos \theta d \theta \quad \right\rvert\, x+1+x y x-\sin \theta \quad \therefore d x=\cos \theta d \theta \\
=12 \cdot \frac{1}{2} \frac{\pi}{2}+\left|2 \frac{\cos ^{3} \theta}{3}\right|_{-\pi / 2}^{A / 2}=3 \pi
\end{aligned}
$$

$$
\begin{align*}
& \text { (b) Let } I(a)=\int_{0}^{\infty} \frac{\operatorname{tania}^{1} a x}{x\left(1+x^{2}\right)} d x \\
& \text { Differentiate nuder sigen of integration w.r-1. a. } \\
& \frac{d I}{d a}=\int_{0}^{\infty} \frac{1}{x\left(1+x^{2}\right)} \cdot \frac{x}{1+a^{2} x^{2}} d x \quad \text { (1) } \\
& =\frac{1}{\left(1-a^{2} \int_{0}^{\infty}\right.}\left(\frac{1}{1+x^{2}}-\frac{a^{2}}{1+a^{2} x^{2}}\right) d x \tag{2}\\
& =\frac{1}{1-a^{2}} \cdot[\tan x-a \tan \operatorname{ain}]_{0}^{\infty} \text { (3) } \\
& =\frac{1}{1} a^{2}\left(\frac{\pi}{2}-\frac{a \pi}{2}\right)=\frac{\pi}{2} \frac{1}{1+a}-\Leftrightarrow \\
& \text { Snteqrante w.r.i } a \text {. } \\
& \begin{array}{ll}
I(a)= & \frac{\pi}{2} \log (1+a)+c, \quad, \quad a \geqslant 0 \\
I(0)=0 & 0+c \quad a
\end{array}
\end{align*}
$$

Q. 4
a. Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$

Answer:
(5) Charactenstic eqwiy the given matrid is

$$
|A-\lambda I|=\left|\begin{array}{ccc}
6-\lambda & -2 & 2 \\
-2 & 3-\lambda & -1 \\
2 & -1 & 3-\lambda
\end{array}\right|=0 \quad \text { i.e. } \lambda^{3}-12 \lambda^{2}+36 \lambda-32=0
$$

eigen values of the given Matrid are roits of Chracteristir eqn.
There are $2,2,8$
Ergen Vector $\left[x_{1} x_{2} x_{2}\right]$ corresponding to eigen Nalue $\lambda=2$ is jivendy

$$
\left[\begin{array}{ccc}
6-2 & -2 & 2 \\
-2 & 3-2 & -1 \\
2 & -1 & 3-2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0 \text { ie }\left[\begin{array}{ccc}
4 & -2 & 2 \\
-2 & 1 & -1 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0
$$

ie. Sol.f $x_{1}-x_{2}+x_{3} \Rightarrow$ (remainny 2eqny are appendar of this.]
Choosng $x_{3}=0, x_{1}=1, x_{2}=2$ ie eifenveetor s $(1,2,0)$
Theng $x_{2}=0, x_{1}=1, x_{3}=-2$ is eigen Vectorn $(1,0,-2)$
These arectwo independent ergen vectars corresponidmy'to tur lame ergenvalues $\lambda=2$.
Sinilurly eyen Vectar corresponduy to eigen ralue $\lambda=8$ is giventy

$$
\begin{aligned}
& [A-8]] \left\lvert\,=\left[\begin{array}{ccc}
-2 & -2 & 2 \\
-2 & -5 & -1 \\
2 & -1 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0\right. \text { or }\left[\begin{array}{ccc}
-2 & -2 & 2 \\
0 & -3 & -3 \\
0 & -3 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \begin{array}{l}
x_{1}+n_{2}-x_{3}=0 \\
\text { ie } \\
x_{2}+x_{3}=0 \\
\text { ie } x_{3}=1 \\
x_{2}=-1 \\
\text { (b) The equations can bre hewsillin un vistian term } \\
x_{1}=2
\end{array}
\end{aligned}
$$

b. Determine the rank of the following matrices:
(i) $\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right] \quad$ (ii) $\left[\begin{array}{cccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$

Answer: Page Number 40 of Text Book 1

Q. 5 a. Use Regula-Falsi method to compute real root of $\mathrm{xe}^{\mathrm{X}}=2$ correct to three decimal places.

Answer:

(B) Rewrite the egh in $f(x)=x e^{x}-2=0$

$$
\begin{aligned}
\therefore f(0) & =-2 \\
f(1) & =e-1=\cdot 718281828
\end{aligned}
$$

$f(0)$ and $f(1)$ differby sigh. Hence rod hies hotween 0 and 1 .
\therefore By Regulirfaki methued, Ist approx. Drat is given tiv

$$
x_{1}=a-\frac{b-a}{f(b)-f(a)}: f(a)=0-\frac{1-0}{f(1)-f(0)} \cdot f(0)=\frac{-1}{2.718281828} \cdot(-21
$$

$$
\begin{aligned}
& f\left(x_{1}\right)=f(.73575888)=+0.73575688 \cdot e^{7357588 e} \\
& \text { Root hes lectures. }
\end{aligned}
$$

\therefore Root hies between. 73575888 and $100 \quad-2=-.4644232$
Ry regwa.fubsi method see nd approx root in given by

$$
\begin{aligned}
x_{2}=\frac{a f(b)-b f(a)}{f(b)-f(a)} & =\frac{73575858 \times .715281828+1 x \cdot 464423228}{.718281528+.464423238} \\
& =83952077
\end{aligned}
$$

$$
f(12)=-0562935
$$

\therefore Root hies between .8395207 and 1.0. By Reguerfubi method sod
appratimaborot is

$$
\begin{aligned}
x_{3}=\frac{x_{2} f\left(x_{1}\right)-x_{f} f\left(x_{2}\right)}{f\left(x_{1}\right)-f\left(x_{2}\right)} & =\frac{.839520) 7 \times 71821828+1.0 \times 0.0562335}{.71821828+0.0562435} \\
& =.85118385
\end{aligned}
$$

\therefore Root hies between. 85118355 and 1.U. By Rognler $=$ false mither

$$
n_{4}=\frac{n_{3} f(2)-n_{2} f\left(x_{2}\right)}{f(2)-f\left(n_{3}\right)}=.852451567
$$

$$
f(n a)=-.00066888
$$

Hence correct answer unto 3 decimal peaces is .852
b. Find by Runge-Kutta method of order four, an approximate value of y at

$$
x=0.2 \text { for the equation } \frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1 . \text { Take } h=0.2
$$

Answer:
Here $\frac{d y}{d x}=f(x, y)=\frac{y-x}{y+x}, x_{0}=0, y_{0}=1, h=0.2$
$\therefore K_{1}=h f\left(x_{0,100}=2 \frac{1-0}{1+0}=.2\right.$
$k_{2}=h\left(x_{1}+\frac{h_{2}}{2}, y_{0}+\frac{k_{1}}{2}\right)=-2 \times \frac{\left(1+\frac{12}{2}\right)-\left(0+\frac{2}{2}\right)}{\left(1+\frac{2}{2}\right)+\left(0+\frac{.2}{2}\right)}=.2 \times \frac{1}{1.2}=0.166666$
$k_{3}=h_{2} f\left(x_{0}+\frac{h}{2}, y_{2}+\frac{k_{2}}{2}\right)=.2 \times \frac{\left(1+\frac{-k 66}{2}\right)-\left(0+\frac{-2}{2}\right)}{\left(1+\frac{1666}{2}\right)+\left(0+\frac{2}{2}\right)}=\cdot 2 \times \frac{.98333}{1.18333}=0.166197$ $K_{4}=h_{2} f\left(x_{0}+\omega, y_{0}+k_{3}\right)=2 \times \frac{\left.\left(1+\cdot 166197^{\frac{66}{2}}\right)+2+2+\frac{2}{2}\right)}{1.16619)+.2}=\cdot 2 \frac{.966197}{1.366197}=0.141443$
$k=\frac{k_{1}+2 k_{2}+2 k_{3}+k_{4}}{6}=\frac{.2+.333332+.332394+1}{6}$
Henee $y(.2)=y 0+k=1.1678615$
Q.6a. Solve the differential equation $(x+1) \frac{d y}{d x}+1=2 e^{-y}$

Answer:

Eqhean be rewrittur on
Separdmig Vaxables $\quad(x+1) \frac{d y}{d x}=2 e^{-y}-1$
Ditegratiny. - $\log \frac{d y}{2 e^{-y}-1}=\frac{d x}{x+1}$ or $\frac{e^{y} d y}{2-e^{y}}=\frac{d x}{x+1}$

$$
\text { or }\left(2-e^{y}\right)(x+1)=\text { conest Ars. }
$$

b. Find the orthogonal trajectories of family of curves $\mathrm{ay}^{2}=\mathrm{x}^{3}$

Answer:

Differentiating $\quad a y^{2}=x^{3}$

$$
\text { a } 2 y \frac{d y}{d x}=3 x^{2}
$$

asy $\frac{d y}{d x}=3 x^{2}$
\therefore Eliminalo parameter os.

$$
\begin{equation*}
\frac{x^{3}}{y^{2}} \cdot 2 y \frac{d x}{d x}=3 x^{2} \tag{1}
\end{equation*}
$$

\therefore Dft. Eqn of orthagrume trajectery n (rupeaee $\frac{y^{2}}{d x} d y-\frac{d x}{d y}$

$$
\frac{2 x^{3}}{y}\left(-\frac{d x}{d y}\right)=3 x^{2} \text { (2) }
$$

or

$2 x d x+3 y d y=0$

$$
2 x^{2}+3 y^{2}=\text { cones } 5 \text { reqd orlt. Fory. }
$$

Q. 7 a. Solve the differential equation $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+25 y=e^{2 x}+x+\operatorname{Sin} x$
X. f (h) A.E. of the given Drift Eq. i

$$
\begin{aligned}
& \quad m^{2}-6 m+25=0 \quad \therefore m=3 \pm 4 i \\
& \text { Patienenv Integral } 51{ }^{2}
\end{aligned}
$$

Paotienenv Integral 5 given try

$$
\begin{aligned}
& P \cdot I=\frac{1}{D^{2}-6 D+25}\left(e^{2 n}+x+\sin x\right) \\
= & \frac{1}{D^{2}-6 D+25} \cdot e^{2 n}+\frac{1}{25}\left(1-\frac{6 D}{25}+\frac{D^{2}}{25}\right)^{-1} x+\frac{1}{D^{2}-6 D-25} \sin x \\
= & \frac{1}{17} e^{2 x}+\frac{1}{25}\left(1+\frac{6 D}{25}+\cdots \cdot x+\frac{1}{4-6 D+25} \sin x\right. \\
= & \frac{1}{17} e^{2 n}+\frac{1}{25}\left(x+\frac{6}{25} \cdot 1\right)-\frac{1}{6} \frac{1}{D-4} \sin x \\
= & \frac{1}{17} e^{2 n}+\frac{1}{25}\left(x+\frac{6}{25}\right)-\frac{1}{6} \frac{1}{-1-16}(D+n) \sin x \\
= & \frac{e^{2 n}}{17}+\frac{1}{25}\left(x+\frac{6}{25}\right)+\frac{1}{102}(\cos x+4 \sin x)
\end{aligned}
$$

Lever complete sal is

$$
y=e^{3 n}\left(4 \cos 4 x+6_{2} \sin 4 x\right)+\frac{1}{17} e^{2 x}+\frac{1}{25}\left(x+\frac{6}{25}\right)+\frac{1}{102}(\cos n+48
$$

b. Solve the equation $\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}=12 \frac{\log x}{x^{2}}$

Answer:
(b) Qiven eqh can be rewsiten us

$$
\begin{aligned}
& x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=12 \log x, \\
& t \quad 1 \cdot t=\log x, \text { ootant } x \frac{d y}{d x}=D y, x^{2} \frac{d y}{d x^{2}}=D(D-1) y
\end{aligned}
$$

\therefore (1) hecomes whee $D=\frac{d}{d t}$
stis conter Dy $=12 t$
Sts coupletnentery functim $=12$
arel

$$
\text { PI }=\frac{1}{b^{2}} 12 t=12 \cdot \frac{t^{3}}{2 \times 3}=2 t^{3}
$$

$$
y=c_{1}+c_{2} t+2 t^{3}=c_{1}+c_{2} \log x+2(\log x)^{3}
$$

Q. 8 a. Obtain the series solution of $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$

Answer:
Q. 8 (B) Here $x=0$ is an or oinary poinh because coefft $f y^{\prime \prime} \neq 0$ at $x=c$
\therefore Let

$$
\begin{aligned}
y & =a_{2}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
\therefore \quad y^{\prime} & =a_{1}+2 a_{2} x+3 a_{2} x^{2}+4 a_{4} x^{3}+\cdots \\
y^{\prime \prime} & =2 a_{2}+3.2 a_{3} x+4.3 a_{4} x^{2}+5 \cdot 4 a_{5} x^{3} \cdots \cdots
\end{aligned}
$$

Cliting these values in the given equatim,

$$
\begin{aligned}
& \left(1-x^{2}\right)\left[2 a_{2}+3.2 a_{3} x+4+3 a_{4} n^{2}+5 \cdot n \cdot a_{5} n^{3} \cdots \cdots\right] \\
& -D \in\left(a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots\right)+2\left(a_{0}+a_{1} n+a_{2} x^{2}+a_{3} n^{3}+\cdots\right)= \\
& \text { uating coeffts of difterent } \quad
\end{aligned}
$$

equating coeffts of different piwers of x on boinsides, weger

$$
\begin{aligned}
& 2 a_{2}+2 a_{0}=0 \quad \text { ie } \quad a_{2}=-a_{0} \\
& 3.2 a_{3}-2 a_{1}+2 a_{1}=\text { ie } a_{3}=0 \quad \text { (conesterms) } \quad \text { (coefftsy } x \text {) } \\
& 4.3 a_{4}-2 a_{2}-4 a_{2}+2 a_{2}=\text { ie } a_{4}=\frac{a_{2}}{3}=-\frac{a_{0}}{3} \quad\left(\cos \operatorname{sen} \text { y } y_{n}^{2}\right) \\
& \text { ete }
\end{aligned}
$$

Putting Volues in (1), we ges

$$
\begin{aligned}
y & \left.=a_{0}+a_{1} x-a_{0} x^{2}+0 \cdot x^{3}-\frac{a_{0}}{3} x^{4}+0 x^{5}+\cdots\right)+a_{1} x \quad \text { os hequ. bel } \\
& =a_{0}\left(1-x^{2}-\frac{1}{3} x^{4} \cdots \cdots\right)
\end{aligned}
$$

b. Show that $\beta(\mathrm{m}, \mathrm{n})=\frac{\overline{\mathrm{m} \mid \mathrm{n}}}{\overline{\mathrm{m}+\mathrm{n}}}$

Answer: Page Number 854 of Text Book 1
Q. 9 a. State and prove Rodrigue's formula.

Answer:
q (b) Legeuatre's palynomial $P_{n}(x)$ is given by

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n} n} \cdot \frac{d^{n}}{d n^{n}}\left(x^{2}-1\right)^{n} \tag{1}
\end{equation*}
$$

To frome (1), lest

$$
\begin{aligned}
& \therefore \quad \frac{d^{d y}}{d n}=y_{1}=n\left(x^{2}-1\right)^{n-1} \cdot 2 x=\frac{2 n \times\left(x^{2}-1\right)^{n}}{\left(x^{2}-1\right)}=\frac{2 n y x}{\left(x^{2}-1\right)} \\
& \therefore \quad\left(x^{2}-1\right) y_{1}-2 n y x=0
\end{aligned}
$$

Dfferentiale (2rottimes usmy Leibnitz's theoren

$$
\begin{align*}
& \left(n^{2}-1\right) y_{n+2}+(n+1) y_{n+1} \cdot 2 x+\frac{(n+1) n}{[2} y_{n} \cdot 2-2 n\left[x y_{n+1}+(n+1) y_{n} \cdot 1\right]=0 \\
& \left(x^{2}-1\right) y_{n+2}+(2 n+2-2 n) x y_{n+1}-n(n+1) y_{n}=0 \quad 102111
\end{align*}
$$

or $\left(1-x^{2}\right) y_{n+2}-2 x y_{n+1}+x(n+1) y_{n}=0 \quad(x)$
If we fut $v=y_{n}=\frac{d^{n} y}{d n^{n}}=\frac{d^{n}}{d n^{n}}\left(x^{2}-1\right)^{n}$., (3) he comes

$$
\left(1-x^{2}\right) \frac{d^{2} v}{d x^{2}}-2 x \frac{d v}{d x}+n(n+1) v=0
$$

Which os cegendre's equation havmy $V=y_{n}=\frac{d^{2} y}{d n}$ as it selution
or is censtant multitle as salutim. Bontits finite Seais solutirin $P_{n}(n)$, a degundris panynomule.

$$
\begin{align*}
P_{n}(x) & =c V=c y_{n}=c \frac{d^{n}}{d_{n^{n}}}\left(x^{2}-1\right)^{n} \\
& =c \frac{d^{n}}{d_{n^{2}}}\left[(x-1)^{n}(x+1)^{n}\right]
\end{align*}
$$

To-evaluate C, fint $x=1$ and remeanber $P_{n}(1)=1$,

$$
\begin{aligned}
& 1=c\left[\text { in }(x+1)^{2}+\right.\text { terms conlainnigh Vin } \\
& \left.\therefore C=\frac{1}{2^{x} L w} \quad 2 \rightarrow \text { at } x=1\right]
\end{aligned}
$$

Hence $P_{n}(x)=\frac{1}{g^{n} L^{2}} \cdot \frac{d^{x}}{d x^{n}}\left(x^{2}-1\right)^{2}$.
b. Prove that $J_{n+1}(n)+J_{n-1}(n)=\frac{2 n}{x} J_{n}(n)$

Answer:
(b) We know that

$$
\begin{equation*}
\frac{d}{d x}\left(x^{2} J_{n}(n)\right)=x^{2} J_{n-1}(n) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{m}\left(x^{-n} J_{n} n\right)=-x^{-n} J_{n+1} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \text { Denotuy } \text { din }_{n} J_{n}(n)=J_{n}^{\prime}(n), \text { (1) }+ \text { (2) can be rewrillin is } \\
& x^{n} J_{n}^{\prime}(n)+n x^{n-1} J_{n}(n)=x^{n} J_{n-1}^{(n)}-(3) \\
& x^{-n} J_{n}^{\prime}(n)-n x^{-n-1} J_{n}(n)=-x^{-n} J_{n+1} \quad \text { (w) }
\end{align*}
$$

$$
\begin{aligned}
& J_{n}^{\prime}(n) \pm \frac{n}{x} J_{n}(n)=J_{n-1}(n)-(5) \\
& J_{n}^{\prime}(n)-\frac{n}{x} J_{n}(n)=-J_{n+1}(n)-(6)
\end{aligned}
$$

Hr

Substracting (6) foom (5),

$$
\frac{2 n}{x} J_{n}(n)=J_{n-1}(n)+J_{n+1}(n)
$$

Ans.

TEXT BOOKS

1. Higher Engineering Mathematics, Dr. B.S.Grewal, 40th edition 2007, Khanna publishers, Delhi.
2. Text book of Engineering Mathematics, N.P. Bali and Manish Goyal, 7th Edition 2007, Laxmi Publication (P) Ltd.
